Einstein hypersurfaces of Damek-Ricci spaces

نویسندگان

چکیده

Einstein hypersurfaces are “very rare” in rank-one symmetric spaces. Damek-Ricci spaces may be viewed as the closest and most natural generalisations of noncompact We prove that no space admits an hypersurface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The wave equation on Damek-Ricci spaces

We study the dispersive properties of the wave equation associated with the shifted Laplace–Beltrami operator on Damek–Ricci spaces, and deduce Strichartz estimates for a large family of admissible pairs. As an application, we obtain global well–posedness results for the nonlinear wave equation.

متن کامل

Damek-ricci Spaces Satisfying the Osserman-,p Condition

has constant eigenvalues , counting multiplic:ities. Note that this definition cloes not depend on the orthonormal basis chosen on the space spanned by E. This notion, introduced i n [SV] or [SP] , generalizes the Osserman condition (p = 1 ) , It is immediate to see th at if p = n then lV1n has constant scalar curvature, Moreover , if p satisfies 1 :::; p < n then the riemannian manifold is Ein...

متن کامل

Wave Equation and Multiplier Estimates on Damek–ricci Spaces

for arbitrary time t and arbitrary λ > 0, where ψ is a smooth bump function supported in [−2, 2] if λ < 1 and supported in [1, 2] if λ ≥ 1. This generalizes previous results in [MT]. We also prove pointwise estimates for the gradient of these convolution kernels. As a corollary, we reprove basic multiplier estimates from [HS] and [V1] and derive Sobolev estimates for the solutions to the wave e...

متن کامل

Pseudo Ricci symmetric real hypersurfaces of a complex projective space

Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.

متن کامل

On Ricci Coefficients of Null Hypersurfaces with Time Foliation in Einstein Vacuum Space-time: Part Ii

This paper is the sequel of [9]. We prove several decomposition results which are crucial to the proof of the main result in [9].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2021

ISSN: ['1879-1662', '0393-0440']

DOI: https://doi.org/10.1016/j.geomphys.2021.104278